WSTITUTE OF MATHEMATICAL SCIENCES
 LIBRARY

4 Washington Place, New York 3, N. Y.

NEW YORK UNIVERSITY INSTITUTE OF MATHEMATICAL SCIENCES

On Families of Sets Represented in Theories HILARY PUTNAM

PREPARED UNDER CONTRACT NO. AF49(638)-777
MATHEMATICAL SCIENCES DIRECTORATE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
> REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR ANY PURPOSE > OE THE UNTED STATES GOVERNMENT.

New York University Institute of Mathematical Sciences

ON FAMILIES OF SETS REPRESENTED IN THEORIES

Hilary Putnam

ABSTRACT: A necessary and sufficient condition is given for a family of sets to be the family of all sets representable in a theory.
"Qualified requestors may obtain copies of this report from the ASTIA Document Service Center, Arlington Hall Station, Arlington 12, Virginia. Department of Defense contractors must be established for ASTIA services, or have their "need-to-know" certified by the cognizant military agency of their project or contract".

The research reported in this document has been sponsored by the Mathematical Sciences Directorate, Air Force Office of Scientific Research, Washington 25, D. C., under Contract No. AF $49(638)-777$.

阳

The purpose of this paper is to answer the following questions: (I) Let F be a fanily of sets ${ }^{1}$. What are necessary and sufficient conditions that F be the family of all sets represented in sorne consistent standard theory ${ }^{2}$? (2) What are necessary and sufficient conditions that F be the family of all sets represented in some consistent axiomatizable standard theory? ${ }^{3}$ I shall prove:

THEOREM 1. Fis the family of all sets represented in some con= sistent standard theory if and only if F is closed under intersection, finite addition and subtraction ${ }^{4}$, and contains the null set and the "universal" set (i.e. the set lin of all non-negative integers).

THEOREM 2. Fis the family of all sets represented in some consistent axiomatizable standard theory if and only if F is a recursively enumerable family of recursively enumerable sets ${ }^{5}$; F contains the null set and the "universal" set; and F is closed under intersection and finite addition and subtraction.

As an example of a consequence of THEOREM I, we may cite the fact that, since the π_{I} sets (the sets whose complements are recursively enumeraile) satisfy the closure conditions mentioned in the theorem, there exists a theory T with the property that all and only Π_{I} sets are represented in T. Similarly, it follows from THEOREM 2 that, since the recursive sets satisfy the conditions given (that they form a recursively enumerable family in the sense on n. 5 was first proved by Demker), there exists an axiomatizable theory T with the property that all and only recursive sets are
represented in T. This result has been previously obtained by Shoenfield (in a stronger form); and the result about Π_{I} sets can likewise be obtained by a quite different construction than the one used here. However, it is of interest to see these results not as isolated curiosities, but as special cases of very general the orems.

1. General Remarks. $\left\{F_{1}, F_{2}, \ldots\right\}$ will be a family of sets which contains the null set, the "universal" set Nn , and is closed under intersection and finite addition and subtraction; P_{1}, P_{2}, \ldots will be an infinite list of monadic predicate letters; \bar{n} will be the nth formal integer; T will be the theory whose axioms are $\bar{n} \neq \bar{m}$ for each pair n, m such that in $\neq m ; P_{i}(\bar{n})$ for each i, n such that $n \in F_{i}$; and $(x)\left(P_{i_{l}}(x) \varepsilon \ldots \& P_{i_{K}}(x) \cdot v . P_{j 1}(x) \varepsilon \ldots \ldots P_{j_{N}}(x)\right)$ for each pair $\left\{p_{i l}, \ldots, p_{i K}\right\},\left\{p_{j l}, \ldots, P_{j_{N}}\right\}$ of disjoint finite sets ($K \geqq I, N \geqq I$) of predicate letters from the list P_{1}, P_{2}, \ldots; $A_{1}, A_{2}, \ldots A_{n} \vdash B$ will be used to mean (where $n \geqq 0$) that there is a proof of B from assumptions $A_{1}, A_{2}, \ldots A_{n}$ in first order predicate calculus with identity; and $\vdash_{T} B$ will mean that B is a theorem (valid sentence) of T.
2. Proofs. To prove Theorems 1 and 2 we need the following

lemmas:

LEMMA $1: \operatorname{Let}\left\{F_{1}, F_{2}, \ldots\right\}$ be the ramily of all sets represented in some consistent standard theory S. Then F_{1}, F_{2}, \ldots is closed under intersection, finite addition, and finite subtraction, and contains the null set and the universal set.
Proof: Closure under intersection is obvious, since if the w.f.f.
(well formed formula) $A(x)$ represents F_{i} and $B(x)$ represents F_{j}, then $A(x) \& B(x)$ represents $F_{i} \cap F_{j}$. The null set is represented by any self contradictory w.f.f with one free variable; the universal set is represented by any valid w.f.f. with one free variable; and finally the sets $F_{i} \cup\left\{n_{I}, n_{2}, \ldots, n_{k}\right\}$ and $F_{i}-\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ are represented by the formulas
$A(x) \vee x=\bar{n}_{I} \vee \ldots v x=\bar{n}_{k}$ and $A(x) \& x \neq \bar{n}_{I} \notin \ldots \notin x \neq \bar{n}_{k}$ respectively.

LEMMA 2: P_{i} represents F_{i} in T.
Proof: If $n \in F_{i}$, then $P_{i}(\bar{n})$ is an axiom of T, and hence $r_{T} P_{i}(\bar{n})$. Now suppose $n \widetilde{\epsilon} F_{i}$, and consider the following interpretation of T : for all m, \bar{m} designates $n ; P_{j}$ is assigned the universal set as extension for $j \neq 1$, and P_{i} is assigned as its extension the set $\mathrm{N}_{\mathrm{n}}-\{n\}$. This interpretation is a true interpretation of T, and according to it the sentence $P_{i}(\bar{n})$ is false. Hence $P_{i}(\bar{n})$ is not a theorem of T.

LEEAA 3. If $\vdash_{T} P_{i_{1}}(x) \varepsilon \ldots_{1} \notin P_{i_{M}}(x) \supset A(x)$, where $M \geqq 0^{6}$ and $A(x)$ is a w.f.f. with one free variable, then $A(x)$ represents one of the F_{i} in ${ }^{T}$.
Proof: (By course-of-values induction on M.) suppose $M=0$. Then $\Gamma_{T^{A}}(x)$; hence $A(x)$ represents iNn. Suppose the lerma holds for $M<N$, and let $\vdash_{T_{T}} F_{i_{1}}(x) \varepsilon \mathcal{E}_{\ldots} \ldots P_{i_{N}}(x)$
D $A(x)$. Let $\bar{s}_{1}, \bar{s}_{2}, \ldots, \bar{s}_{k}$ be all of the formal integers that occur in $A(x)$. If $A(\bar{t})$ is never provable unless $\Gamma_{T} P_{i_{1}}(\bar{t}) \varepsilon \ldots \xi P_{i_{i N}}(\bar{t})$ or $t \in\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, then $A(x)$ represents a set that can be obtained from $F_{i_{I}} \cap F_{i_{2}} \cap \ldots \cap F_{i_{N}}$ by finite addition, and hence
one of the F_{i}. Now suppose that $\vdash_{T^{A}}(\bar{t})$, where it is not the case that $\vdash_{T} P_{i_{I}}(\bar{\epsilon}) \varepsilon \ldots k P_{i_{N}}(\bar{f})$, and $t \neq s_{K}$. Let the following be all of the axioms needed for some proof of $A(\bar{t})$ in T :
$P_{j_{1}}(\bar{t}), \ldots, P_{j_{U}}(\bar{t}) ; \bar{t} \neq \bar{n}_{I}, \ldots, \bar{t} \neq \bar{n}_{j} ; A_{I}, \ldots, A_{S}$; where the A_{i} are all of the axioms not containing \bar{t} used in the proof. If $U=0$, then, by the Deduction Theorem, $A_{1}, \ldots, A_{S} \nmid \bar{t} \neq \bar{n}_{1} \xi \ldots$...t $\neq \bar{n}_{j} \supset A(\bar{t})$; hence, since t does not occur in $A_{1}, A_{2}, \ldots, A_{S}$, and t is not one of the $s_{i}, A_{1}, A_{2}, \ldots, A_{S} f(x)\left(x \neq \bar{n}_{1} \varepsilon \ldots \ldots x \neq n_{j} \supset A(x)\right)$. Then $\vdash_{T}(x)\left(x \neq \bar{n}_{1} \notin \ldots k x \neq \bar{n}_{j} \supset A(x)\right)$, and $A(x)$ represents $N n-W_{2}$ where W has to be a subset of $\left\{n_{l}, \ldots, n_{j}\right\}$, and hence finite. On the other hand, if $U \neq 0$, then by a similar argument $A_{1}, A_{2}, \ldots, A_{S} \vdash(x)\left(P_{j_{1}}(x) \varepsilon \varepsilon_{\ldots} \ldots \mathcal{D}_{j_{U}}(x) \supset\left(x \neq \bar{n}_{1} \varepsilon \ldots k x \neq \bar{n}_{j} \supset A(x)\right)\right)$, and so $F_{T} P_{j_{1}}(x) k \ldots \& P_{j_{U}}(x) \supset\left(x \neq \bar{n}_{I} \varepsilon \ldots \ldots x \neq \bar{n}_{j} \supset A(x)\right)$. But we assumed $\vdash_{T}{ }^{P}{ }_{i_{1}}(x) \not \xi^{\prime} \ldots \xi P_{i_{N}}(x) \supset A(x)$, so
 $\left.\ldots k^{k} \neq \bar{n}_{j} \supset A(x)\right)$.

If the P_{i} 's and the P_{j} 's are all distinct, then $\vdash_{T}(x)\left(F_{i_{I}}(x) \varepsilon \in \& P_{i_{i N}}(x) \cdot v \cdot P_{j_{I}}(x) \varepsilon \ldots \& P_{j_{I T}}(x)\right)$, and hence $\vdash_{T}\left(x \neq \bar{n}_{1} \varepsilon \ldots k x \neq \bar{n}_{j} \supset A(x)\right)$ and $A(x)$ represents in - w, where W is a finite set. And if the P_{i} 's and the P_{j} 's are not all distinct, then $P_{i_{I}}(x) \varepsilon \ldots_{i_{N}}(x) \cdot v \cdot P_{j_{I}}(x) \varepsilon \ldots f_{j_{U}}(x)$ is quantficationally equivalent (in fact, equivalent by propositional
 .v. $\left.P_{j_{s}}(x) \varepsilon P_{j_{S}}(x) \varepsilon . \ldots \& P_{j_{S}}(Q)(x)\right)$, where $P_{i_{1}}, P_{k_{2}}, \ldots, P_{k_{H}}$ are all
of the P's that occur both among the P_{i} and among the P_{j}, while $P_{i_{r}}, P_{i_{r}}, P_{i_{r}}, \ldots, P_{i_{r}}(D)$ are the P_{i} that do not also occur among the P_{j}, and similarly $P_{j_{S}}, P_{j_{S},}, P_{j_{S}, 1}, \ldots, P_{j_{S}}(Q)$ are the P_{j} that do not also occur among the P_{i}. Moreover, D cannot $=0$ (otherwise $\Gamma_{T} P_{i_{I}}(\bar{t}) \varepsilon \ldots . P_{i_{N}}(\bar{t})$, contrary to the choice of t), and we may assume that $Q \neq 0$ (since otherwise we would have $U<i N$, and the lemma would follow by the induction hypothesis ${ }^{7}$). Thus $(x)\left(P_{i_{r}}(x) \varepsilon \ldots \& P_{i_{r}}(D)(x) \cdot v \cdot P_{j_{S}}(x) \& \ldots \& P_{j_{S}}(Q)(x)\right)$ is an axion of T, so that $P_{i_{I}}(x) \varepsilon \ldots \& P_{i_{N}}(x) \cdot v, P_{j_{I}}(x) \varepsilon \ldots \& P_{j_{U}}(x)$ is provably equivalent to $P_{k_{I}}(x) \notin \ldots P_{l_{H}}(x)$, where $H<N$. Hence the lemma follows by the induction hypothesis and the fact that since (I) is a theorem of $T, \vdash_{T} P_{l_{I}}(x) \varepsilon \ldots \& P_{k_{H}}(x) \supset\left(x \neq \bar{n}_{I} \varepsilon \ldots \varepsilon x \neq \bar{n}_{j} \supset A(x)\right)$. IEMPA 4. The family of all sets represented in an axiomatizable theory is a recursively enumerable family of recursively enumerable sets.

Proof: Let the w.f.fs of S (where S is any axiomatizable theory) with one Iree variable be effectively listed as $A_{I}(x), A_{2}(x), \ldots$. The predicate $P(i, n)={ }_{d f} \Gamma_{S_{i}}(\bar{n})$ is a recursively enumerable predicate (to verify this, assuming Church's Thesis, note that it can be written in the form $(\operatorname{Ex}) \operatorname{Prf}(x, n, i)$, where $\operatorname{Prf}(x, n, i)$ is the decidable, and hence recursive, predicate $"^{x}$ is the godel number of a proof of the formula that results when \bar{n} is put for all occurences of $|x|$ in $A_{i}(x)^{\prime \prime}$. Moreover, $A_{i}(x)$ represents $\{n \mid P(i, n)\}$, or $\{f(i)\}(c f . n, 5)$, where $f^{8} f(i)=S_{l}^{I}(e, i)$ and e is a gödel number of P.

Proof of THEOREM 1. By LEMMA 1 , we have "only if". To prove "if" (i.e., to show that the conditions given in the theorem are sufficient) we shall show that if $\left\{F_{1}, F_{2}, \ldots\right\}$ satisfies the conditions, then $\left\{F_{1}, F_{2}, \ldots\right\}$ is the farnily of all sets represented in T (where T is the theory mentioned in 81).

By LEMA 2, F_{i} is represented in T (for $i=1,2, \ldots$). So it suffices to show that for every w.f.f. $A(x)$ of $T, A(x)$ represents one of the F_{i}. Accordingly, let $A(x)$ be a w.f.f. of T with X as its only free variable, and let $\bar{s}_{1}, \bar{s}_{2}, \ldots, \bar{s}_{k}$ be all the formal integers that occur in $A(x)$. If $\Gamma_{T^{A}}(\bar{E})$ only when $t \in\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, then $A(x)$ represents a finite set, and hence one of the F_{i} (noting that all finite sets can be obtained from the null set by finite adcition). Now suppose $\Gamma_{T^{A}}(\bar{t})$ where $t \tilde{\epsilon}\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$. Let the following be all of the axioms needed for some proof of $A(\bar{t})$ in $T: \quad P_{i_{l}}(\bar{t}), \ldots, P_{i_{M}}(\bar{t}): \bar{t} \neq n_{I}, \ldots, \bar{t} \neq \bar{n}_{j} ; A_{1}, \ldots, A_{S} ;$ where the A_{k} are all of the axioms not containing \bar{t} used in the proof. Then $A_{1}, A_{2}, \ldots, A_{S}\left\lceil P_{i_{1}}(\bar{t}) \varepsilon \ldots \& P_{i_{M}}(\bar{t}) \supset\left(\bar{t} \neq \bar{n}_{1} \varepsilon \ldots \ldots t \neq \bar{n}_{j} \supset A(\bar{t})\right)\right.$; hence $A_{1}, A_{2}, \ldots, \Lambda_{S} \upharpoonright P_{i_{1}}(x) \varepsilon \ldots \& P_{i_{11}}(x) \supset\left(x=\bar{n}_{1} \varepsilon \ldots k x=\bar{n}_{j} \supset A(x)\right)$; and hence $\Gamma_{T}{ }^{P}{ }_{i_{I}}(x) \varepsilon \ldots \mathcal{E}^{\prime} P_{i_{M}}(x) \supset\left(x \neq \bar{n}_{I} \varepsilon \ldots, \varepsilon_{x}=\bar{n}_{j} \supset A(x)\right)$. Then by LEMMA $3, x \neq n_{1} \not \varepsilon_{0} \ldots f x \neq n_{j} \supset A(x)$ represents one of the F_{i}, and hence $A(x)$ represents one of the $F_{i}(c f, n, 7)$. Proof of THEOREM 2. The proof is similar to the proof of THEOREM 1 , except that LEMMA 4 must also be used for the "only if" part of the theorem, and we must note that what we have given for this case is a recursively enumerable set of axions. The axioratizability of T (in the sense of recursive axiomatizability) then follows by Craig's Theorem.

FOOTNOTES

1) Terminology: In this paper "set" means set of non-negative integers, except when there is indication to the contrary. A formula $P(x)$ (with one free variable x) is said to "represent" a set S in a theory T if for all integers $n, n \in S$ if and only if $P(\bar{n})$ is a theorem of T (N.B.it is not required that $P(\bar{n})$ should be refutable in $T--$ ie., that $\sim P(\bar{n})$ should be provable in $T--$ when $n \widetilde{E} S$). The term "represent" cones from Undecidable Theories. ($n \hat{E} S$ is an abbreviation for $\sim n \in S$.)
2) By a "standard theory" I mean a "theory is standard formalization" in the sense in which that term is used in Undecidable Theories, in which there are terms (called formal integers in the sequel), say $\overline{0}, \overline{1}, \overline{2}, \ldots$ (which may be interpreted as designating $0,1,2, \ldots$) such that $\bar{n} \neq \bar{n}$ is provable for all n, m such that $\mathrm{n} \neq \mathrm{m}$ 。
3) A theory in standard formalization is called "axiomatizable" in Undecidable Theories if the set of valid sentences in identical With the set of first-order consequences of some recursive subset (called the set of "axioms"). (Instead of "recursive" it would be better to say "solvable", in the sense of Post, since strictly speaking the recursiveness of a set of formulas depends upon the godel numbering employed, whereas "solvability" is defined directly for sets of expressions in any finite alphabet.)
4) A set B will be said to come from a set A by finite addition (resp. finite subtraction) ir $B=A U W$ (resp. A - W) where W is a finite set.
5) Following Kleene, let $\{n\}$ be the $n t h$ partial recursive function in the standard enumeration. (This notation is not to be confused with the notation $\{n \mid \ldots\}$, for the set of all n satisfying the condition ..., nor with the notation $\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}$, for the set consisting of $\left.A_{1}, A_{2}, A_{3}, \ldots.\right)$ We shall identify each partial recursive function with its domain, for the purpose of enumerating the recursively enumerable sets: thus $\{n\}$ will alternatively be thought of, where convenient, as "the nth recursively enumerable set, in the standard enumeration." A family F is called a "recursively enumerable family of recursively enumerable sets" if the members of F are $\{t(0)\},\{t(I)\}, \ldots$, for some general recursive function t.
6) If $M=0$, the D is to be understood as deleted.
7) More precisely, it would follow from the induction hypothesis that $x \neq \bar{n}_{1}$ ह... $x \neq \bar{n}_{j} \supset A(x)$ represents one of the F_{i}. But $x \neq n_{1}$ ह... $d x \neq n_{j} A(x)$ represents a superset with at most finitely many more members than the set represented by $A(x)$ (as is clear from the fact that this formula can also be written $x=n_{l} v x=\bar{n}_{2} v \ldots v x=\bar{n}_{j} v A(x)$ can be obtained from this F_{i} by finite subtraction. Fence $A(x)$ also represents one of the F_{i} (since the F_{i} are closed under finite surtraction).
8) $S_{I}^{I}(e, i)$ is a primitive recursive function whose value for any $e, i)$ is a Gödel numoer of $\left\{x \mid P_{e}(i, x)\right\}$, where P_{e} is the eth 2 place recursively enumerable predicate in the standard enumeration. This function is constructed in Introduction to Motamathematics.

BIBLIOGRAPHY

1. A. Tarski, A. Mostowski, and R. M. Robinson, Undecidable Theories, Amsterdam, North-Holland Publishing Co., 1953.
2. S. C. Kleene, Introduction to Metamathematics, New York, Van Nostrand, 1952.

DISTRIBUTION LIST AIR FORCE OPFICE OF SCIENTIFIC RESEARCH
MATHEMATICAL SCIENCES DIRECTORATE
(ONE COPY UNLESS OTAERWISE NOTED)

ALABAMA

Commander
Army Rocket $\not \subset$ Guided Missile Agency
ATTN: ORDXR-OTL
Redstone Arsenal, Alabama

BELGIUM

Commander

European Office, ARDC
47 Rue Cantersteen
Brussels, Belgium
CALIFORNIA
Applied Mathematics \nless Statistics Laboratory
Stanford University
Stanford, California
Department of Mathematics
University of California
Berkeley, California
Commander
Air Force Flight Test Center
ATTN: Technical Library
Edwards Air Force Base, California

The Rand Corporation
Technical Library
1700 Main Street
Santa Ifonica, California
Commander
lst Missile Division
ATTN: Operation Analysis
Office
Vandenburg Air Force Base, California

CONNECTICUT

Department of Mathematics Yale University New Haven, Connecticut

DISTRICT OF COLUMBIA

Office of Naval Research
Department of the Navy
ATTN: Code 432
Washington 25, D.c.
Director
Department of Commerce Office of Technical Services Washingt on 25, D.C.

Administrator
National Aeronautics and Space Administration
ATTN: Documents Library 1520 H Street, N. W. Washington 25, D.C.

Library
National Bureau of Standards Washington 25, D.C.

Data Processing Systems Division National Bureau of Standards ATTN: Mr. Russel A. Kirsch Washington 25, D.C.

Applied Nlathematics Division National Eureau of Standards Washington 25, I. ©.

Headquarters, USAF Assistant for operations Analys is
Deputy Chief of Staff,
Operations, AFOOA Washington 25, D.c.

Commander
Air Force Office of Scientific
Research
ATTN: SRM
Washington 25, D.C.
Director
U.S. Naval Research Laboratory ATTN: Library
Washington 25, D.C.
National Science Foundation
Program Director for Mathematical Sciences
Washington 25, D.C.
Commander, AFRD
ATTit: Technical Library Washington 25, D. C.

Canadian Joint Staff
ATTN: DRB/DSIS
2450 Massachusetts Avenue, N.W. Washington, D.C.

ILEINOIS

Department of Mathematics Northwestern University
Evanston, Illinois
Laboratories for Applied Sciences
University of Chicago
Museum of Science and Industry
ATTN: Library, W-305
Chicago 37, Illinois
Department of Mathematics
University of Chicagc
Chicago 37, Illinois
Department of lathematics
University of Illinois
Urbana, Illinois
INDIANA
Department of Mathematics Purdue University
Lafayette, Indiana

MAPYLAND

Istitute for Fluid Dynamics and Applied Mathematics
University of Maryland
College Park, Maryland
Mathematics and Physics Library
The Johns Hopliins University
Baltimore, Maryland
Director
National Security Agency ATTN: Dr. H. H. Campaign Fort George G. Meade, Maryland

PASSACHUSETTS

Department of Mathematics
Harvard University
Cambridge 38, Massachusetts
Department of Pathematics Massachusetts Institute of Technclogy
Cambridge 38, Massachusetts
Commander
Detachment 2, AFRD
ATTM: Technical Library
L. G. Hanscom Field

Bedford, Massachusetts
MIOHIGAN
Department of Mathematics Wayne State University Detroit I, Michigan

MINNESOTA

Department of Mathematics Folwell Hall
University of Minnesota Minneapolis, Minnescta

Department of líathematics
Institute of Technology
Engineering Building University of Minnesota Minneapolis, Minnesota

MISSOURI

Department of Mathematics
Washington University
St. Louis 8, Missouri
Department of Mathematics
University of Missouri
Columbia, lissouri
NEBRASKA
Commander
Strategic Air Cormand
ATTN: Operations Analysis
Offutt Air Force Base
Omaha, Nebrasiza
NEW JEFSEY
The James Forrestal Research Center Library
Princeton University
Princeton, New Jersey
Library
Institute for Advanced Study
Princeton, New Jersey
Department of Mathematics
Fine Hall
Princeton University
Princeton, New Jersey
Commanding General
Signal Corps Engineering Laboratory
ATTN: SIGFM/EL-RPO
Ft. Monmouth, New Jersey

NEW MEXICO

Commander
Air Force Missile Development Center
ATTN: Technical Library, HDOI Holloman Air Force Base, New Mexico

Commander
Air Force Special Weapons Center ATTiN: Technical Library, SWOI Kirtland Air Force Base
Albuquerque, New Mexico

NEW YORK

Professor J. Wolfowitz Mathematics Department White Hall
Cornell University
Ithaca New York
Department of Mathematics
Syracuse University
Syracuse, New York
Institute for Mathematical Sciences
New York University
ATTN: Professor M. Kline
25 Waverly Place
new York, New York
Institute for Aeronautical Sciences
ATM: Librarian
2 East 64th Street
New York 16, New York

NORTH CAROLINA

Department of Mathematics
University of Ncrth Carolina
Chapel Hill, North Carolina
Department of Statistics
University of North Carolina
Chapel Hill, North Carolina
Office of Ordnance Research
Box CM
Duke Station
Durham, North Carolina
Department of Mathematics
Luke University
Duke Station
Durham, North Carolina

OHIO
P.O. Box AA

Wright-Patterson Air Force Base
Ohio
Commander
Wright Air Development Division
ATRN: WCOSI
Wright-Patters on Air Force Base
Ohio
Commander
Aeronautical Research Laboratories
ATTN: Technical Library
Wright-Patterson Air Force Base
Ohio
USAF Institute of Technology Library
(2)

ATTN: MCLI-ITLIB
Building 125, Area B
Wright-Patterson Air Force Base
Ohio

PEN SYLVAITA

Department of Nathematics Carnegie Institute of Technology Pittsburgh, Pennsylvania

Department of lathematics University of Pennsylvania Philadelphia, Pennsylvania

TENNESSEE
AEDC Library
ARO, Inc.
Arnold AF Station, Tennessee
U.S. Atomic Energy Commission Technical Information Service Extension
P.O. Box 62

Oak Ridge, Tennessee

TEえAS

Applied Mechanics Reviews
Southwest Research Institute
8500 Culebra Road
San Antonio 6, Texas
Department of Mathematics
Rice Institute
Houston, Texas
VIRGINIA
Armed Services Technical Information Agency
ATTN: TIPDR
Arlington Hall Station
Arlington 12, Virginia
WISCONS IN
Department of Mathematics
University of Wisconsin
Madison, Misconsin
Mathematics Research Center, U.S. Army

ATTN: F. E. Langer
University of Wisconsin
Ifadison, Wisconsin

Date Due

OCT 231970			
1siv * 99\%			
63]	printed	IN U. 5. A.	

N. Y. U. Institute of

Mathematical Sciences
Meme 25umiveny Placewar
New York 3, N. Y.
4 Washington Place

